CAPSIDIOL: AN ANTIFUNGAL COMPOUND PRODUCED IN *NICOTIANA TABACUM* AND *NICOTIANA CLEVELANDII* FOLLOWING INFECTION WITH TOBACCO NECROSIS VIRUS

JOHN A. BAILEY, R. S. BURDEN and G. G. VINCENT

A.R.C. Plant Growth Substance and Systemic Fungicide Unit, Wye College, Ashford, Kent, TN25 5AH

(Received 20 June 1974)

Key Word Index—Nicotiana tabacum; Nicotiana clevelandii; Solanaceae; tobacco necrosis virus; sesquiterpene; capsidiol; antifungal.

Plants. Nicotiana tabacum (cv. White Burley), Nicotiana clevelandii. Previous work. Many phenolic compounds found to accumulate after infection of N. tabacum with tobacco mosaic virus[1]. Eudesmane-type sesquiterpene, 1-keto- α -cyperone found in N. tabacum[2].

Present work. Young plants (4–8 weeks old) were inoculated with TNV in aq suspension. When brown lesions had formed (5-7 days) the leaves were harvested, frozen and extracted with C₆H₆. Using the Cladosporium cucumerinum-thin layer plate assay[3], a single major antifungal zone was observed with extracts of both species. The active compound was purified by TLC (hexane-acetone, 3:1) and eventually obtained as colourless needles, m.p. 152–154°, from Et₂O-light petroleum. It was identified as capsidiol, which has been previously isolated and characterised[4] from sweet pepper and which has known fungitoxic properties [5], by comparison of PMR and MS and by direct comparison (TLC,GLC and mixed m.p.) with an authentic specimen, m.p. 152-153°. Capsidiol was not detected in extracts of uninoculated leaves.

Biological signifiance. The results are similar to those obtained with various legumes [3,6] and with Nicotiana glutinosa [7] and provide further evidence that tissues which are necrotic as a result of

infection with a virus usually contain antifungal compounds. In *Phaseolus vulgaris* these compounds are phytoalexins[3]. It thus seems likely that capsidiol, which was originally isolated as a phytoalexin from sweet pepper[5], may have a similar function in *Nicotiana tabacum* and *N. clevelandii* and hence be involved in disease resistance.

Acknowledgements—We thank Dr. A. Stoessl for generously providing a sample of capsidiol, Mr. R. Self and Mr. J. Eagles for mass spectrometry and Professor R. L. Wain, F.R.S., for advice and encouragement.

REFERENCES

- 1. Tanguy, J. and Martin, C. (1972) Phytochemistry 11, 19.
- 2. Roberts, D. L. (1972) Phytochemistry 11, 2077.
- Bailey, J. A. and Burden, R. S. (1973) Physiol. Plant Pathol. 3, 171.
- Birnbaum, G. I., Stoessl, A., Grover, S. H. and Stothers, J. B. (1974) Can. J. Chem. 52, 993.
- Stoessl, A., Unwin, C. H. and Ward, E. W. B. (1972) Phytopathol. Z. 74, 141.
- 6. Bailey, J. A. (1973) J. Gen. Microbiol. 75, 119.
- Burden, R. S., Bailey, J. A. and Vincent, G. G. Phytochemistry in press.